Volume 8, Issue 3 (Autumn 2021)                   johe 2021, 8(3): 67-73 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Habibi Mohraz M, Golbabaei F, Je Yu I. Evaluation of Antibacterial Properties of Electrospun Polyurethane-chitosan Nanofiber Media. johe 2021; 8 (3) :67-73
URL: http://johe.umsha.ac.ir/article-1-753-en.html
1- Center of Excellence for Occupational Health Engineering, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
2- Department of Occupational Health Engineering, Tehran University of Medical Sciences, Tehran, Iran , fgolbabaei@tums.ac.ir
3- Institute of Nano Products Safety Research, Hoseo University, South Korea
Abstract:   (1543 Views)
Background and Objective: The accumulation of airborne bioaerosols on filtration media and their gradual proliferation in the presence of appropriate moisture and environmental conditions is one of the major problems against using these media. The use of hybrid media containing antibacterial agents is one of the available solutions to this problem. The present study aimed to fabricate nonwoven nanofiber media with an antibacterial activity using an electrospinning process.
Materials and Methods: Polyurethane-chitosan nanofiber media the weight ratios of 100 to 0, 90 to 10, 80 to 20, and 70 to 30 were fabricated by simultaneous electrospinning process. The evaluation of the antibacterial properties of the media was performed after their preparation by standard methods of disk diffusion (ISO 20645) and colony counting (ISO 20743).
Results: The investigation of antibacterial activity of samples by both methods showed that the media with polyurethane to chitosan weight ratio of 70 to 30 had suitable antibacterial activity. The mean values of bacterial growth inhibition zone and antibacterial activity for polyurethane-chitosan (70/30) media were obtained at 0.26 and 2.225 mm, respectively, indicating the significant antibacterial activity of this media.
Conclusion: The results showed that antibacterial nanofiber media can be created by adding chitosan nanofibers as antimicrobial agents to the polyurethane nanofiber.
Full-Text [PDF 959 kb]   (635 Downloads)    
Type of Study: Research Article | Subject: Chemical agents

References
1. Yoon K, Hsiao BS, Chu B. Functional nanofibers for environmental applications. J Mater Chem. 2008;18(44):5326-34. DOI: 10.1039/B804128H [DOI]
2. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325-47. PMID: 20100560 DOI: 10.1016/j.biotechadv.2010.01.004. [DOI] [PubMed]
3. Chen L. Next generation of electrospun textiles for chemical and biological protection and air filtration. Massachusetts Inst of Tech Cambridge. 2009. [PubMed]
4. Desai K, Kit K, Li J, Davidson PM, Zivanovic S, Meyer H, et al. Nanofibrous chitosan non-wovens for filtration applications. Polymer. 2009;50(15):3661-9. DOI:10.1016/j.polymer.2009.05.058.
5. Ramaseshan R, Sundarrajan S, Liu Y, Barhate R, Lala NL, Ramakrishna S, et al. Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology. 2006;17(12):2947-2953. DOI: 10.1088/0957-4484/17/12/021. [DOI]
6. Hong KH, Sun G. Antimicrobial and chemical detoxifying functions of cotton fabrics containing different benzophenone derivatives. Carbohydr Polym. 2008;71(4):598-605.DOI: 10.1016/j.carbpol.2007.07.004. [DOI]
7. Zhang R, Liu C, Hsu P-C, Zhang C, Liu N, Zhang J, et al. Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources. Nano lett. 2016;16(6):3642-9. PMID: 27167892 DOI: 10.1021/acs.nanolett.6b00771. [DOI] [PubMed]
8. Matulevicius J, Kliucininkas L, Prasauskas T, Buivydiene D, Martuzevicius D. The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci. 2016;92:27-37. DOI: 10.1016/j.jaerosci.2015.10.006 [DOI]
9. Gu GQ, Han CB, Lu CX, He C, Jiang T, Gao ZL, et al. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS nano. 2017;11(6):6211-7. PMID: 28489941 DOI: 10.1021/acsnano.7b02321 [DOI] [PubMed]
10. Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, et al. Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng. 2017;302(1):1600353. DOI: 10.1002/mame.201600353 [DOI]
11. Habibi Mohraz M, Golbabaei F, Je Yu I, Sedigh Zadeh A, Mansournia MA, Farhang Dehghan S, et al. Investigating effective parameters on the nanoparticles air filtration using Polyurethane nanofiber mats. Saf Health Work. 2018;8(1):29-42.
12. Yoon KY, Byeon JH, Park CW, Hwang J. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol. 2008;42(4):1251-5. PMID: 18351101 DOI: 10.1021/es0720199 [DOI] [PubMed]
13. Verdenelli M, Cecchini C, Orpianesi C, Dadea G, Cresci A. Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J Appl Microbiol. 2003;94(1):9-15 PMID: 12492918 DOI: 10.1046/j.1365-2672.2003.01820.x [DOI] [PubMed]
14. Byeon JH, Yoon KY, Park JH, Hwang J. Characteristics of electroless copper-deposited activated carbon fibers for antibacterial action and adsorption–desorption of volatile organic compounds. Carbon. 2007;45(11):2313-6. DOI: 10.1016/j.carbon.2007.06.026 [DOI]
15. Luksamijarulkul P, Aiempradit N, Vatanasomboon P. Microbial contamination on used surgical masks among hospital personnel and microbial air quality in their working wards: A hospital in Bangkok. Oman Med J. 2014;29(5):346. DOI:10.5001/omj.2014.92 [DOI]
16. Eby DM, Luckarift HR, Johnson GR. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. ACS Appl Mater Interfaces. 2009;1(7):1553-60. PMID: 20355960 DOI: 10.1021/am9002155 [DOI] [PubMed]
17. Spasova M, Manolova N, Paneva D, Rashkov I. Preparation of chitosan-containing nanofibres by electrospinning of chitosan/poly (ethylene oxide) blend solutions. e-Polymers. 2004;4(1):624-35 DOI: 10.1515/epoly.2004.4.1.624 [DOI]
18. Habibi Mohraz M, Golbabaei F, Je Yu I, Ghahri A. Optimization of the electrospinning process of polyurethane nanofibers and their filtration performance for use in respiratory protection mask filters. Mil Med. 2019;21(2):195-204.
19. ISO 20645.Determination of Antibacterial Activity: Agar Difusion Plate Test. ISO. 2004.
20. ISO 20743:Textiles Determination of antibacterial activity of textile products. ISO.2013.
21. Cai Z-x, Mo X-m, Zhang K-h, Fan L-p, Yin A-l, He C-l, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci. 2010;11(9):3529-39 DOI: 10.3390/ijms11093529 [DOI]
22. Ibrahim HM, El-Zairy EM. Carboxymethylchitosan nanofibers containing silver nanoparticles: Preparation, Characterization and Antibacterial activity. J App Pharm Sci. 2016;6(07):043-8. DOI:10.7324/JAPS.2016.60706 [DOI]
23. Arvand M, Mirzaei E, Derakhshan MA, Kharrazi S, Sadroddiny E, Babapour M, et al. Fabrication of antibacterial silver nanoparticle‐modified chitosan fibers using Eucalyptus extract as a reducing agent. J Appl Polym Sci. 2015;132(25).DOI: 10.1002/app.42133 [DOI]
24. No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002;74(1-2):65-72. PMID: 11929171 DOI: 10.1016/S0168-1605(01)00717-6 [DOI] [PubMed]
25. Dai T, Tanaka M, Huang Y-Y, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti. 2011;9(7):857-79. PMID: 21810057 DOI: 10.1586/eri.11.59 [DOI] [PubMed]
26. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51-63. PMID: 20951455 DOI: 10.1016/j.ijfoodmicro.2010.09.012 [DOI] [PubMed]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Occupational Hygiene Engineering

Designed & Developed by : Yektaweb