

Policy Brief

Silica as an Environmental Pollutant

Farshid Ghorbani Shahna¹ , Ali Poormohammadi^{1*} , Ghasem Azarian²

¹. Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

². Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Article history:

Received: 07 May 2025

Revised: 07 July 2025

Accepted: 26 July 2025

ePublished: 22 September 2025

***Corresponding author:** Ali Poormohammadi, Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran

E-mail:
apoormohammadi000@yahoo.com

Exposure to crystalline silica can lead to obstructive airway and parenchymal lung diseases, the most important of which is silicosis. Silicosis is primarily an occupational disease caused by long-term exposure to free crystalline silica in silica-related work environments. Environmental exposure to silica may also occur through ambient air, which is particularly important in cities and villages near workshops and factories that emit silica due to their operations. Several studies in recent years have reported exposure to free crystalline silica in the open air around factories and related silica-related industries. This study emphasizes the importance and necessity of developing standards for the release of free crystalline silica into the open air around associated industries, as an environmental pollutant.

Keywords: Environmental pollutant, Free crystalline silica, Non-occupational exposure, Silicosis

Please cite this article as follows: Ghorbani Shahna F, Poormohammadi A, Azarian Gh. Silica as an Environmental Pollutant Unit. J Occup Hyg Eng. 2025; 12(1): 87-92 DOI: 10.53208/johe.12.1.87

Extended Abstract

Background and Objective

Crystalline silica, a common mineral compound found in various industrial processes such as mining, glass production, brick manufacturing, and ceramics, has long been recognized as a hazardous occupational pollutant. Traditionally, the risk of silica exposure has been associated almost exclusively with workplace environments, placing workers at the forefront of silicosis and other respiratory diseases. However, growing evidence indicates that communities near industrial zones may also be exposed to silica through ambient air. This emerging concern challenges the assumption that silicosis is strictly an occupational disease and raises unresolved questions about public health protection. The objective of this extended abstract is to explore the environmental dimensions of crystalline silica exposure, highlight the gaps in existing regulatory systems, and emphasize the urgent need to establish silica-specific environmental health standards.

Materials and Methods

This extended analysis draws on a comprehensive review of epidemiological studies, environmental monitoring data, and international guidelines related to airborne silica. Research examining non-occupational exposure, community case reports of silicosis, and ambient PM10-based silica assessments near industrial facilities was carefully compared. Major frameworks issued by bodies such as ACGIH, OSHA, NIOSH, and national health ministries were examined to evaluate disparities between occupational exposure limits and general air quality regulations. Historical case reports—from silicosis in desert regions to respiratory illness near gold tailings—were included to provide context. The synthesis focused on interpreting these findings within a policy-making lens, emphasizing the consequences of regulatory gaps.

Results

The review revealed a significant misalignment between awareness of occupational hazards and recognition of environmental risks. While occupational exposure limits (approximately 0.025 mg/m³) are clearly defined in many countries, environmental emission standards allow total dust levels of 100–200 mg/m³ without specifying crystalline silica content. Several field studies reported ambient silica concentrations far exceeding safe levels. For instance, analyses conducted in South African mining communities documented silica levels in environmental PM10 approaching 90 µg/m³, substantially higher than levels associated with chronic respiratory risk. Similarly, investigations in Indian rural regions detected pneumoconiosis among residents with no industrial employment, suggesting passive inhalation from surrounding airborne dust. Historical cases further confirmed this phenomenon. In 1961, non-occupational silicosis was reported in urban environments due to street dust. Another case described a desert dweller who

developed silicosis solely from windborne sand exposure. These findings demonstrate that environmental silica exposure is not theoretical but a measurable danger affecting vulnerable populations, particularly children, the elderly, and individuals with prolonged outdoor exposure.

Discussion

The persistence of silicosis in developing regions, combined with these emerging environmental records, emphasizes a crucial gap in public health approaches. Unlike occupational settings—where protective equipment, periodic screening, and regulatory oversight are in place—environmental exposure occurs silently and involuntarily. Residents living near factories, mines, or unregulated brick kilns rarely have access to health information, let alone respiratory monitoring. Exposure occurs through daily routines: breathing outdoor air, playing outside, or even drying laundry outdoors. Despite this reality, environmental policy frameworks generally treat particulate emissions by focusing on total suspended particles, without specifying harmful mineral components such as silica. This lack of specificity undermines enforcement and enables industries to emit dust containing high levels of crystalline silica legally. The scientific distinction between benign dusts (e.g., limestone) and fibrogenic particles like silica is rarely reflected in environmental legislation, placing entire communities at risk of preventable disease. Furthermore, the pathophysiological nature of silica toxicity demands proactive regulation. Once silica particles lodge in alveolar tissue, they initiate chronic inflammation and irreversible fibrosis. There is no curative treatment for silicosis; thus, prevention remains the only effective strategy. Environmental monitoring tools, such as fixed-site air sampling and mobile exposure assessments, should be integrated into public health surveillance. Policies mandating buffer zones between industrial operations and residential areas, alongside community air monitoring, would represent meaningful progress. Awareness campaigns can also prepare communities to recognize respiratory symptoms early, promoting timely medical intervention. Another overlooked dimension is the socioeconomic burden. Environmental silicosis can affect populations with limited access to healthcare, leading to a cycle of morbidity, financial hardship, and delayed diagnosis. Without standards, compensation systems cannot acknowledge non-occupational cases, leaving affected families unsupported. This reinforces the urgency of redefining silica not just as a workplace hazard but as a public environmental toxin.

Conclusion

This extended review underscores crystalline silica as a serious environmental pollutant with consequences that extend far beyond traditional occupational boundaries. Evidence from multiple regions demonstrates that ambient exposure can induce conditions once believed to be confined to industrial workers. The current absence of silica-

specific environmental regulations represents a profound gap in public health protection. Establishing ambient exposure limits, requiring continuous monitoring around industrial perimeters, and integrating silica awareness into environmental health policy are critical steps toward prevention. Recognizing silica as both an occupational and environmental threat will enable the implementation of comprehensive regulations that protect not only workers but entire communities. Ultimately, addressing

environmental silica exposure is not solely a regulatory matter but an ethical responsibility. Preventing invisible and involuntary exposure to pathogenic mineral dust aligns with the foundational goals of public health: to safeguard populations from avoidable harm. As industrial activity expands globally, the development of silica-specific environmental standards will be essential in preventing a resurgence of preventable respiratory disease in future generations.

خلاصه سیاستی

سیلیس به عنوان آلاینده‌ای محیطی

فرشید قربانی شهرنا^۱ ، علی پورمحمدی^{۱*}، قاسم آذریان^۲

۱. قطب علمی آموزشی بهداشت حرفه‌ای، مرکز تحقیقات بهداشت و ایمنی شغلی، دانشگاه علوم پزشکی همدان، همدان، ایران

۲. مرکز تحقیقات علوم بهداشتی، پژوهشکده علوم فناوری بهداشت، دانشگاه علوم پزشکی همدان، همدان، ایران

چکیده

مواجهه با ذرات هواپردازی سیلیس کریستالی فرد را در معرض بیماری‌های انسدادی راه‌های هوایی و پارانشیمال ریوی قرار می‌دهد که مهم‌ترین آن‌ها سیلیکوزیس است. سیلیکوزیس عمدهاً بیماری شغلی است که به‌واسطه مواجهه طولانی مدت با سیلیس آزاد کریستالی در محیط‌های کاری مرتبط با سیلیس بروز می‌کند. مواجهه محیطی با سیلیس ممکن است از طریق هوای آزاد نیز اتفاق بیفتد و این موضوع در شهرها و روستاهایی که در اطراف آن‌ها به‌واسطه فعالیت کارگاه‌ها و کارخانه‌ها پراکندگی سیلیس وجود دارد، بسیار با اهمیت است. حد مجاز مواجهه شغلی با ذرات سیلیس حدود ۰/۰۲۵ میلی‌گرم بر متر مکعب است. از طرف دیگر، استاندارد زیستمحیطی انتشار ذرات سیلیس در دودکش صنایع را بسیار بالاتر از این مقدار برشمرده که حدود ۰۰۰-۱۰۰ میلی‌گرم بر متر مکعب مشابه سایر ذرات است و این موضوع به چالشی بهداشتی تبدیل شده است. چندین مطالعه در سال‌های اخیر مواجهه سیلیس آزاد کریستالی در هوای آزاد اطراف کارخانه‌ها و معادن مرتبط با سیلیس را گزارش کرده‌اند. در این مطالعه نیز بر اهمیت و لزوم تدوین استانداردهای مرتبط با رهاسازی سیلیس آزاد کریستالی در هوای آزاد پیامون صنایع مرتبط به عنوان آلاینده‌ای محیطی تأکید می‌شود.

واژگان کلیدی: سیلیس آزاد کریستالی، سیلیکوزیس، مواجهه غیرشغلی، آلاینده محیطی

تاریخ دریافت مقاله: ۱۴۰۴/۰۲/۱۷

تاریخ ویرایش مقاله: ۱۴۰۴/۰۴/۱۶

تاریخ پذیرش مقاله: ۱۴۰۴/۰۵/۰۴

تاریخ انتشار مقاله: ۱۴۰۴/۰۶/۳۱

تمامی حقوق نشر برای دانشگاه علوم پزشکی همدان محفوظ است.

* نویسنده مسئول: علی پورمحمدی،
قطب علمی آموزشی بهداشت حرفه‌ای،
مرکز تحقیقات بهداشت و ایمنی شغلی،
دانشگاه بهداشت، دانشگاه علوم پزشکی همدان، ایران

ایمیل:

apoormohammadi000@yahoo.com

استناد: قربانی شهرنا، فرشید، پورمحمدی، علی؛ آذریان، قاسم. سیلیس به عنوان آلاینده‌ای محیطی. مجله مهندسی بهداشت حرفه‌ای، بهار ۱۴۰۴، (۱) (۱): ۸۷-۹۲

۹۲

مقدمه

گروه اول که غیرفیبروتیک یا بی‌اثرند، اصولاً سمتی نیستند و روی نسج ریه اثر فیبروزدهنده ندارند و فقط آلرژی ایجاد می‌کنند، نظریه گچ، سیمان و آهک؛ اما گروه دوم ذرات سمتی و فیبروزدهنده‌اند که به بافت ریه حمله و فیبروز ایجاد می‌کنند و بیماری حاصل از آن درمان‌پذیر نیست و تنها می‌توان از پیشرفت آن جلوگیری کرد، نظری سیلیس آزاد کریستالی [۱]. به طور کلی، مواجهه با سیلیس کریستالی فرد را در معرض بیماری‌های انسدادی راه‌های هوایی و پارانشیمال ریوی قرار می‌دهد که مهم‌ترین آن‌ها سیلیکوزیس است. سیلیکوزیس بیماری پارانشیمال ریوی است که بر اثر

سیلیس کریستالی جزو غبارهای فیبروتیک است که در صنایع گوناگونی نظیر معدن، شیشه و سرامیک، سفالگری، کارخانه سیمان، سنگبری، آسفالت، کاشی‌سازی، ریخته‌گری و کارخانه تولید سیلیس و تمام گروههای شغلی، که به‌نحوی با پوسته زمین در ارتباط هستند، تولید می‌شود [۱، ۲]. سیلیس به دو شکل عمدۀ بلوری (Crystalline) و فرم بی‌شکل (Amorphous) وجود دارد و شکل عمدۀ بلوری بسته به میزان حرارت زمان تشکیل، به سه شکل کوارتز، کریستوبالیت و تریدیمیت درمی‌آید [۳]. ذرات هواپرداز طور کلی به دو دسته بی‌اثر و فیبروتیک تقسیم می‌شوند.

محیطی و نمونهبرداری فردی، فراتر از سطح مجاز سیلیس کریستالی بودند که به ترتیب به حداکثر سطوح ۹۰ و ۵۰/۹ میکروگرم در متر مکعب رسیدند. به طور کلی، نتایج نشان دهنده مواجهه بیش از حد مردم با سیلیس کریستالی در جوامع اطراف صنایع مرتبط با سیلیس است و نیاز به اعمال محدودیت مواجهه با سیلیس محیطی وجود دارد [۹].

Speke سیلیکوزیس ناشی از گردوغبار در خیابان‌ها و جاده‌ها را در سال ۱۹۶۱ گزارش کرده است [۱۰]. سپس Farina و Gambini یک مورد نادر از سیلیکوزیس ناشی از استنشاق شن بیابان را گزارش کردند [۱۱]. اولین مطالعه عمده درباره مواجهه محیطی با گردوغبار سیلیس در هند را Saiyed و همکارانش گزارش کردند [۱۲] که در این مطالعه، وقوع پنوموکونیوز غیرشگلی در مرکز لاداخ (Ladakh) از کشور هند، جایی که هیچ معدن یا صنعتی وجود ندارد، بررسی شد. در مجموع، ۴۴۹ نفر از سه روتای صبو (Saboo)، شی (Shey) و چوشوت (Chushot) مورد مطالعه قرار گرفتند که شیوع پنوموکونیوزیس در این روتاه‌ها به ترتیب ۲۰/۱ و ۴۵/۳ و ۲۰/۱ متر مکعب بود [۱۲]. همان‌گونه که ذکر شد، مواجهه محیطی با سیلیس ممکن است از طریق هوازی آزاد نیز اتفاق بیفتد و این موضوع در شهرها و روتاه‌هایی که در اطراف آن‌ها به‌واسطه فعالیت کارگاه‌ها و کارخانه‌ها پراکندگی غبار سیلیس وجود دارد، بسیار اهمیت دارد. از این‌رو، تعریف و به کارگیری یک‌سری اقدامات اجرایی و تدوین قوانین و الزامات، ضروری به نظر می‌رسد.

نقد شرایط فعلی

در شرایط کنونی، ازان‌جاكه استانداردهای زیستمحیطی انتشار ذرات از صنایع عمده‌ای به‌صورت یکنواخت و یکسان و فارغ از آثار و ترکیب شیمیایی ذرات تدوین و اجرا می‌شود، بسیاری از صنایع و کارگاه‌ها با توجه‌به عدم وجود استاندارد زیستمحیطی درباره رهاسازی گردوغبار سیلیس در هوازی آزاد، هیچ کنترلی بر این موضوع ندارند و گاهی در صنایع مرتبط مشاهده می‌شود که برخی سیستم‌های کنترلی خود را در زمان‌های خاصی خاموش می‌کنند. این موضوع سبب اعتراض ساکنان شهرها و روتاه‌های مجاور کارگاه‌ها و کارخانه‌های مرتبط با تولید سیلیس می‌شود. لذا، تدوین استانداردهای زیستمحیطی سیلیس آزاد کریستالی به‌عنوان آلاینده شغلی و زیستمحیطی، امری ضروری به نظر می‌رسد و می‌تواند با تمرکز بر اقدامات کنترلی، منجر به کاهش غلظت این ترکیب معدنی در هوازی محیط کار و محیط‌زیست اطراف

استنشاق فرم‌های مختلف کریستال‌های دی‌اکسیدسیلیکون یا سیلیس آزاد به وجود می‌آید. هر چند شیوع سیلیکوزیس در اواخر قرن نوزدهم و ابتدای قرن بیستم به اوج خود رسید، هنوز در کشورهای پیشرفته هم موارد سیلیکوزیس مشاهده می‌شود [۲]. البته عمدۀ بیماران سیلیکوزیس در کشورهای در حال توسعه مانند هند، چین و ایران گزارش شده است [۲، ۴]. در سال‌های گذشته، گردوغبارهایی که کمتر از حدود بک درصد کوارتز داشتند، به‌عنوان گردوغبار بی‌اثر شناخته می‌شوند؛ اما مطالعات چند دهه اخیر بیانگر آن است که گردوغبارهای دارای درصد کم کوارتز هم در صورت مواجهه طولانی‌مدت ممکن است خطرناک باشند و منجر به بیماری‌های انسدادی ریه شوند [۵]. در سال ۲۰۱۰، مجمع دولتی متخصصان بهداشت صنعتی آمریکا (ACGIH) حد مجاز مواجهه شغلی با سیلیس کریستالی استنشاقی را ۰/۰۲۵ میلی‌گرم بر متر مکعب، مؤسسه ملی ایمنی و بهداشت شغلی (OSHA) ۰/۰ میلی‌گرم بر متر مکعب و انسنتیتو ملی ایمنی و بهداشت شغلی آمریکا (NIOSH) مقدار ۰/۰۵ میلی‌گرم بر متر مکعب معرفی کرده است. در حال حاضر، حد مجاز مواجهه شغلی با سیلیس آزاد کریستالی قابل استنشاق در ایران ۰/۰۲۵ میلی‌گرم در متر مکعب اعلام شده است [۶]. لذا، ضروری است سیاست‌گذاران در این حوزه به‌منظور پیشگیری از بروز بیماری‌های غیرشگلی مرتبط با مواجهه محیطی با سیلیس آزاد کریستالی، اقداماتی برای کنترل و کاهش مواجهه جامعه و عموم مردم انجام بدهند.

تحلیل وضعیت موجود

در گذشته، بیماری سیلیکوزیس تنها به‌عنوان بیماری شغلی مطرح بوده که صرفاً به‌واسطه قرار گرفتن طولانی‌مدت افراد شاغل در محیط‌های کاری آلوده به غلظت‌های بالای سیلیس مشاهده می‌شده است؛ در حالی که در سال‌های اخیر، برخی مطالعات گزارش‌هایی درباره مواجهه غیرشگلی با سیلیس آزاد کریستالی در هوازی آزاد ارائه کرده‌اند. در این راستا، مطالعه‌ای در کشور هند به بررسی سطح غلظت سیلیس آزاد در هوازی محیط پرداخت و نتایج آن نشان داد که غلظت‌های نسبتاً بالایی در مواجهه‌های غیرشگلی با سیلیس وجود دارد که نیازمند تعریف استاندارد غیرشگلی برای این آلاینده است [۸]. در مطالعه‌ای دیگر، غلظت ذرات هوازد سیلیس کریستالی در اطراف معادن طلا در آفریقای جنوبی مورد ارزیابی قرار گرفت که نتایج بیانگر آن است که سطوح سیلیس کریستالی به‌دست‌آمده از نمونه‌برداری PM₁₀

کارخانه‌ها و کارگاه‌های مرتبط شود.

توصیه سیاستی

برای پیشگیری از مواجهه محیطی (غیرشغلی) با سیلیس آزاد کریستالی، این راهکارهای کلی مطرح می‌شود:

۱. تعریف حداکثر غلظت استاندارد محیطی ۲۴ ساعته برای مواجهه محیطی با سیلیس آزاد کریستالی از طریق هوای آزاد؛
۲. تدوین و اجرای حداقل فاصله استاندارد برای احداث واحدهای تولیدی و صنایع مرتبط با سیلیس که بهنحوی باعث پراکندگی ذرات هوابرد سیلیس در هوای محیط اطراف آنها می‌شود؛
۳. تدوین و اجرای مقررات کنترلی برای پیشگیری از پراکندگی ذرات سیلیس در فضای اطراف کارگاهها و کارخانه‌های تولیدکننده ذرات سیلیس هوابرد؛
۴. تدوین و اجرای مقررات انصباطی برای متخلفان از دستورها و ضوابط و دستورالعمل‌های بهداشتی؛
۵. نمونه‌برداری مستمر از هوای آزاد محیط‌های اطراف کارخانه‌ها و کارگاه‌هایی که احتمال تولید ذرات سیلیس آزاد در آن‌ها وجود دارد؛
۶. نظارت بر حسن اجرای مقررات با همکاری دستگاه‌های ناظر، بهویژه سازمان حفاظت از محیط‌زیست و وزارت بهداشت، درمان و آموزش پزشکی.

تشکر و قدردانی

بدین وسیله از معاونت تحقیقات و فناوری و مرکز تحقیقات بهداشت و ایمنی شغلی دانشگاه علوم پزشکی همدان بهدلیل حمایت از این کار تحقیقاتی تقدیر و تشکر می‌شود.

تضاد منافع

نویسنده‌گان اعلام می‌کنند که هیچ‌گونه تضاد منافعی مرتبط با این پژوهه بین نویسنده‌گان و سایر سازمان‌ها وجود ندارد.

ملاحظات اخلاقی

این مطالعه بر مبنای طرحی تحقیقاتی مصوب با کد ۱۴۰۲۰۷۰۴۵۵۵۵ و کد اخلاق IR.UMSHA.REC.1402.471 نگارش شده است.

سهم نویسنده‌گان

هریک از نویسنده‌گان در این مطالعه سهمی داشتند که بدین ترتیب است:

- طراحی مطالعه: فرشید قربانی شهرنا؛
- تحلیل و تفسیر: علی پورمحمدی و قاسم آذریان؛
- تهییه پیش‌نویس اولیه: علی پورمحمدی؛
- بازنگری و ویرایش: فرشید قربانی شهرنا و قاسم آذریان.

حمایت مالی

باتوجه به ماهیت مطالعه، که از نوع خلاصه سیاستی و مبتنی بر ارائه سیاست است، از این پژوهش حمایت مالی مستقیم نشده است.

REFERENCES

1. Zarei F, Azari MR, Salehpour S, Khodakarim S, Kalantary S, Tavakol E. Exposure assessment of core making workers to respirable crystalline silica dust. *J Health Saf Work*. 2017;7(1):1-8. [Link](#)
2. Singh SK, Singh RK, Singh KK, Singh RK, Singh S. Concentration, sources and health effects of silica in ambient respirable dust of Jharia Coalfields Region, India. *Environ Sci Eur*. 2022;34(1):68. [DOI: 10.1186/s12302-022-00651-x](#)
3. Mohammadi H, Golbabaei F, Dehghan SF, Normohammadi M. Occupational exposure assessment to crystalline silica in an insulator industry: determination the risk of mortality from silicosis and lung cancer. *J Health Saf Work*. 2017;7(1):45-52. [Link](#)
4. Kouchaki MT, Sheikholeslami S, Mirmoeini ES, Jozdani AF, Ayubi E, Kahramfar Z, et al. Evaluation of epidemiological features and clinical symptoms in patients with silicosis hospitalized in educational and medical centers of Hamadan, Iran, from 2011 to 2021. *J Occup Hyg Eng*. 2024;11(2):105-14. [DOI: 10.32592/johe.11.2.105](#)
5. Meijer, E., Kromhout, H., & Heederik, D. Respiratory effects of exposure to low levels of concrete dust containing crystalline silica. *American journal of industrial medicine*, 2001; 40(2): 133-140. [DOI: 10.1002/ajim.1080](#)
6. Sen S, Mitra R, Mukherjee S, Das P, Moitra S. Silicosis in current scenario: a review of literature. *Curr Respir Med Rev*. 2016;12(1):56-64. [Link](#)
7. Rezazahenezari M, Sahafardi F, Zarei F, Hariri AE, Salehpour S, Soori H. Risk assessment of mortality from silicosis and lung cancer in workers of machine factories and traditional brick production workshops with crystalline silica exposure. *Occup Med (Lond)*. 2020;70(3):178-86. [DOI: 10.18502/tkj.v12i3.4984](#)
8. Ministry of Health and Medical Education. Occupational exposure level. Tehran: Institute for Environmental Research Publication; 2012. [Link](#)
9. Andraos C, Utembe W, Gulumian M. Exceedance of environmental exposure limits to crystalline silica in communities surrounding gold mine tailings storage facilities in South Africa. *Sci Total Environ*. 2018;619:620:504-16. [PMID: 29156270](#) [DOI: 10.1016/j.scitotenv.2017.11.135](#)
10. Sepke G. Silicosis from street dust. *Z Gesamte Hyg*. 1961;7:833-7. [Link](#)
11. Farina G, Gambini G. A rare case of silicosis from inhalation of desert sand. *Med Lav*. 1968;59:281-6. [PMID: 5735960](#)
12. Saiyed H, Sharma Y, Sadhu H, Norboo T, Patel P, Patel T, et al. Non-occupational pneumoconiosis at high altitude villages in central Ladakh. *Occup Environ Med*. 1991;48(12):825-9. [PMID: 1663387](#) [DOI: 10.1136/oem.48.12.825](#)